Aluminium-SiC composite: Study of its mechanical properties

D Sánchez-García, A Herrera-Vázquez, J Hinojosa-Torres

Abstract


Cylindrical specimens with geometries and sizes, in agreement with the standard of American Society for Testing Materials (ASTM), they were used to characterize the tension behaviour of the composite. A significant effect of the SiC shape/size on the tensile behaviour of aluminium-based composite was observed, caused by the differences between the superheat (993 K) and the mould temperatures (333 K, 473 K, 623 K) in the melting practice. Ultimate tensile stress and Fracture Toughness factor for the composite showed a numerical advantage over the corresponding ones to the aluminium at a solidification speed of 82.5 K·s-1. At the mould temperature of 473 K, ultimate tensile stress decreased 8.9 % meanwhile Fracture Toughness factor increased 4.3 %. For mould temperatures higher than 473 K the size and number of SiC-clusters determined the tension behaviour of the specimens. High hardness values are obtained with high cooling rates (82.5 K·s-1) and it diminishes gradually as the cooling speed decreases for both sizes of particles.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Printed ISSN: 0857-6149

Online ISSN: 2630-0508